
A Novel Quantum-inspired Genetic Algorithm with
Expanded Solution Space

Renjie Liao
School of Automation Science

and Electrical Engineering
Beihang University

Beijing 100191
Email: lrjconan@gmail.com

Xueyao Wang
School of Automation Science

and Electrical Engineering
Beihang University

Beijing 100191
Email: daphenne@sina.com

Zengchang Qin
School of Automation Science

and Electrical Engineering
Beihang University

Beijing 100191
Email: zcqin@buaa.edu.cn

Abstract—In this paper, we present a novel quantum-inspired
genetic algorithm with expanded solution space. Based on the
double chains quantum genetic algorithm (DCQGA), we have
expanded the solution space by increasing the number of solution
space transformation functions. And we propose a novel method
for quantum rotation gate’s update by using the sign function
and the gradient of objective function. With this method we
can automatically determine the direction of quantum rotation
gate and adaptively adjust the magnitude of quantum rotation
gate. Through experimenting on 2 benchmark problem in the
optimization literature: Rosenbrock function and Schaffer’s F6
function, we demonstrate that our expanded solution space
quantum genentic algorithm (ESSQGA) has achieved more
satisfactory results than DCQGA and common genetic algorithm.

I. INTRODUCTION

The evolutionary algorithm, such as the genetic algorithm
(GA) [1], artificial immune algorithm (AIA) [2], particle
swarm optimization (PSO) [3], ant colony algorithm (AC)
[4], is essentially a process of imitation of biological system,
populations’ adaption to the environment and their interaction.
It is thought as a significant guidance to researches of algo-
rithms’ fusion. Considering the quantum mechanism which is
well known as accelerating calculation and enhancing global
search capability[5], many researchers have tried to combine
the evolutionary algorithm with quantum mechanism, thus
approximately realizing the advantages of quantum mecha-
nism on non-quantum computers. At present, the fusion of
quantum mechanism and evolutionary algorithm is focus on
the population coding and evolution strategy [6].

II. EXPANDED SOLUTION SPACE QUANTUM GENETIC

ALGORITHM

For a variety of quantum evolutionary algorithm, the popu-
lation coding is based on the binary coding of qubits’ measure-
ment and the evolution is realized through changes in the phase
qubit. However, the frequent encoding and decoding process
of binary code will increase the computation undoubtedly in
numerical optimization problem. And the common method of
changing phase qubit is based on lookup table which involves
many conditional judgements. To overcome the shortcomings
forementioned, we propose a novel quantum-inspired genetic
algorithm which is improved from the double chains quantum
genetic algorithm (DCQGA) [7].

A. Double Chain Coding

In the DCQGA, the probability amplitude of quantum bits
is used for coding and the double chain coding is proposed.
Considering the randomness of initial population and the
constraints the quantum probability amplitude should satisfy,
we take the double chain coding mechanism in our algorithm.
The chromosome described in double chain coding mechanism
is shown below:

pi =
[∣∣∣∣ cos (ti1)

sin (ti1)

∣∣∣∣ cos (ti2)
sin (ti2)

∣∣∣∣ ...

∣∣∣∣ cos (tin)
sin (tin)

∣∣∣∣
]

(1)

In this equation, tij = 2π×r, r is a random number between
0 and 1; i = 1, 2, · · · , m; j = 1, 2, · · · , n; m represents the
population size, while n represents quantum bits. In double
chain coding mechanism, every quantum bit’s probability
amplitude is thought to be two genes up and down side by
side, and every chromosome contains two parallel gene chains.
Besides, every gene chain represents a optimal solution. Thus,
every chromosome represents two optimal solutions of the
search space in the same time. It can be shown in Equation
(2) and Equation (3).

pis = [sin (ti1) , sin (ti2) , ..., sin (tin)] (2)

pic = [cos (ti1) , cos (ti2) , ..., cos (tin)] (3)

In these two equations, i = 1, 2, · · · , m. pis is the sine
solution and pic is the cosine solution. This can avoid the
randomness in measurement. Moreover, during each iteration,
these two solutions update in the same time. Therefore, with
the same population size, we can enhance the ergodic ability
to the search space and accelerate the process of optimization.

B. Solution Space Transformation

To make the algorithm applicable to every optimization
problem, a process of solution space transformation is nec-
essary. Through the transformation, we can obtain the final
solution of the objective function from gene chains. In DC-
QGA, the solution space transformation is only limited to
two dimension. It means that we can get two solutions from

2010 Second International Conference on Intelligent Human-Machine Systems and Cybernetics

978-0-7695-4151-8/10 $26.00 © 2010 IEEE

DOI 10.1109/IHMSC.2010.148

206

2010 Second International Conference on Intelligent Human-Machine Systems and Cybernetics

978-0-7695-4151-8/10 $26.00 © 2010 IEEE

DOI 10.1109/IHMSC.2010.148

192

two gene chains. To improve the algorithm, we construct a
transformation which can give four solutions from two gene
chains, thus expanding the number of candidate solutions
and increasing the probability of obtaining the global optimal
solution.

For each chromosome, it contains 2n probability amplitude
of quantum bits in one population. The 2n amplitude can
be mapped to the solution space Ω from the n-dimensional
unit space. Every probability amplitude corresponds to an
optimized variable in the solution space. Setting [αj

i , β
j
i]

T as
the ith quantum bit in chromosome pj , we can get the solution
space variables based on the transformation: Equation (4) -
Equation (7).

Xj
i1 =

1
2

[
bi

(
1 + αj

i

)
+ ai

(
1 − αj

i

)]
(4)

Xj
i2 =

1
2

[
bi

(
1 + βj

i

)
+ ai

(
1 − βj

i

)]
(5)

Xj
i3 =

1
2

[
bi

(
1 + αj

i

)
+ ai

(
1 − βj

i

)]
(6)

Xj
i4 =

1
2

[
bi

(
1 + βj

i

)
+ ai

(
1 − αj

i

)]
(7)

where bi is the ith solution’s lower limit and ai is the ith
solution’s upper limit. As a result, we can get four solutions
to the optimization problem from only one chromosome.

C. Crossover

In quantum-inspired genetic algorithm, the crossover op-
eration is realized by rotating the phase qubit. We use the
quantum rotation gate to update the phase qubit. It is shown
in Equation (8).

U (Δθ) =
[

cos (Δθ) − sin (Δθ)
sin (Δθ) cos (Δθ)

]
(8)

The update process is as below:

[
cos (Δθ) − sin (Δθ)
sin (Δθ) cos (Δθ)

] [
cos (t)
sin (t)

]
=

[
cos (t + Δθ)
sin (t + Δθ)

]

(9)
where Δθ is the magnitude of the phase of the quantum

rotation gate. From Equation (9), it is clear that the quantum
rotation gate can change the phase instead of the length of
quantum bits.

It is known that the magnitude and direction of phase
Δθ can affect the convergence speed and efficiency of the
algorithm[7]. The detailed implementation is as below:

1) The Direction of Quantum Rotation Gate: Assume
α0, β0 as the probability amplitude of the global optimal
solution’s one qubit and α1, β1 as the probability amplitude
of the current solution’s one qubit.

Here, we assume matrix A as

A =
∣∣∣∣ α0 α1

β0 β1

∣∣∣∣ (10)

Thus, the direction of quantum rotation angle Δθ can be
decided by the following equation:

sgn (Δθ) =
{ −sgn (A) A �= 0

−1 or + 1 A = 0 (11)

where sgn(x) is the sign function.
2) The Magnitude of the Phase of the Quantum Rotation

Gate: Most quantum genetic algorithms take the lookup
table method to determine the magnitude of the phase of
the quantum rotation gate. However, its computation grows
large since the conditional judgments in the table increase. To
overcome the shortcoming, we propose a method based on the
gradient of the objective function as below:

Δθk+1 = −sgn (A) ×
[
ηkΔθk + λ (1 − ηk)

∂Δfk

∂θk

]
(12)

where Δθk is the kth magnitude of the phase of the quantum
rotation gate, f is the objective function to be optimized, λ
is the momentum factor and ηk is the kth rotation coefficient
and is determined by the following function:

ηk+1 =
{

μincηk Δfk+1 < Δfk

μdecηk Δfk+1 > Δfk
(13)

In Equation (13), μinc is the rotation coefficient increase
factor, and μdec represents the rotation coefficient decrease
factor.

Considering the discrete optimization, we use the first order
difference replacing the derivation as Equation (14) shows to
us.

Δfk = fk − fk−1 (14)

D. Mutation

For mutation procedure, we choose quantum Non-gate as
the key operation. To realize it, we first choose one chro-
mosome randomly. Then several quantum bits are chosen
to do quantum Non-gate transformation, which can realize
the exchange of two probability amplitude of quantum bits.
Finally, two gene chains can variate in the same time. This
kind of variation is actually realized by rotating the quantum
bits’ phases. For example, if one quantum bit’s phase is t, after
this variation, its phase becomes π/2 − t, that is, its phase
rotate π/2 − 2t forward. Every rotation is forward without
comparing with the current best chromosome and thus can
help to increase the diversity of population and lower the
probability of premature convergence.

III. EXPERIMENTS

A. Benchmark Function

To test the performance of ESSQGA and make a comparison
with DCQGA and GA, two standard benchmark functions
commonly found in the GA literature are employed. They are
shown as follow:

• Rosenbrock Function:

207193

f1(x) =
n−1∑
i=1

[100(xi+1 − xi
2)

2
+ (xi − 1)2] (15)

To make the Rosenbrock function visualized, we only draw
the image of input vector which contains two dimensions.The
image of Rosenbrock function is shown in Fig.1.

−2
−1

0
1

2

−1

0

1

2

3
0

500

1000

1500

2000

2500

xy

f

Fig. 1. The image of 2 dimension Rosenbrock function.

• Schaffer’s F6 Function:

f2(x) = 0.5 +
(sin

√
x2 + y2)

2 − 0.5

(1.0 + 0.001(x2 + y2))2
(16)

The image of Schaffer’s F6 function is shown in Fig.2.

−5

0

5

−5

0

5
0

0.2

0.4

0.6

0.8

1

xy

f

Fig. 2. The image of SchafferF 6 function.

B. Detailed Implementation

To eliminate the parameter settings’ effect on algorithm’s
performance as much as possible, we take the shared param-
eters fixed. Such as, the population size was set to 100, the
probability of crossover was set to 0.8 and the probability
of mutation was set to 0.1. The simulations were stopped
when a predetermined stopping criterion was reached or after
a maximum number of generations were run. The maximum

number of generations for implementation was fixed at 500.
For the specific parameters in ESSQGA, we set them as below:

the momentum factor λ equaled 0.9, the initial rotation
coefficient η0 equaled 0.1, the increase factor of rotation co-
efficient μinc equaled 1.25 and the decrease factor of rotation
coefficient μdec equaled 0.8.

For Rosenbrock Function, it has a global minimum value 0
at the coordinate (1,1). For simplification, we took vector of
two dimensions as the input of simulation and limited each
dimension of the input vector in the range of -100 to 100.
And we multiplied the Rosenbrock function by -1, thus the
problem to seek the global minimum value had been turned
into seeking the global maximum value. The predetermined
stopping criterion of simulation was that the optimized result
during one specific optimization was greater than -25. If
the criterion was met, we took the optimized result as one
convergence and regarded it as the final result of one specific
simulation. Otherwise, we took the best optimized result in
the population as the final result of one specific simulation.

For Schaffer’s F6 function, it has a global maximum value 1
at the coordinate (0,0). We also limited each dimension of the
input vector in the range of -100 to 100. The predetermined
stopping criterion of simulation was that the optimized result
during one specific optimization was greater than 0.995. We
use the principles forementioned to analyze the result.

C. Experimental Results and Discuss

We conducted 100 simulations on each function above for
each algorithm (GA,DCQGA,ESSQGA). To establish a frame-
work of comparison, we used some indicators of evaluation
listed in the tables.

1) The comparison of one specific simulation: To see the
comparison result of these three algorithms in one specific
simulation, we painted three optimization result in the same
figure.

For Rosenbrock function, the results of the 3 optimization
algorithms in one specific simulation are shown in Fig.3 and
Fig.4.

50 100 150 200 250 300 350 400 450 500
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

DCQGA
ESSQGA

Fig. 3. The result of DCQGA and ESSQGA for Rosenbrock function.

208194

0 50 100 150 200 250 300 350 400 450 500
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0
x 10

9

GA

Fig. 4. The result of GA for Rosenbrock function.

We can see from the figure that the result of the GA
is oscillated and DCQGA’s and ESSQGA’s results are more
stable. In this figure, the best result GA got is -80.1467 which
is smaller than the DCQGA’s -13.6553 and the ESSQGA’s
-4.5293.

For Schaffer’s F6 function, the results of the 3 optimization
algorithm in one specific simulation are shown in Fig.5.

0 50 100 150 200 250 300 350 400 450 500
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

GA
DCQGA
ESSQGA

Fig. 5. The result of GA, DCQGA and ESSQGA for Schaffer’s F6 function.

Through the figure, we can clearly see that genetic algorithm
with quantum mechanism performs more stably and tends to
get better results than common genetic algorithm.

2) The comparison of 100 simulation: We use indicators
forementioned to evaluate the average performance of these
3 algorithms. The results of 100 simulation on Rosenbrock
function are shown in Table1.

The results of 100 simulation on Schaffer’s F6 function are
shown in Table2.

Through the results in the tables, we can see that, for
Rosenbrock function, though our algorithm’s CPU time spend
is higher than GA, it achieved the best average value and the
best maximum value of optimized results. And for Schaffer’s
F6 function, our algorithm’s CPU time spend is least, average
value of optimized results is second and maximum value of

The kind of
algorithm GA DCQGA ESSQGA

The time of
convergence 1 97 100

The average spend
of compute time 2.3541 5.8115 4.0593

The average value
of optimized results -2.2545e+009 -5.0946 -1.3208
The maximum value
of optimized results -20.0697 -0.0152 -0.0020

TABLE I
THE RESULTS OF SIMULATION ON ROSENBROCK FUNCTION

The kind of
algorithm GA DCQGA ESSQGA

The time of
convergence 25 38 51

The average spend
of compute time 5.69 6.47 1.28

The average value
of optimized results 0.9420 0.9827 0.9772
The maximum value
of optimized results 0.9992 0.9975 0.9998

TABLE II
THE RESULTS OF SIMULATION ON SCHAFFER’S F6 FUNCTION

optimized results is best.

IV. CONCLUSION AND FUTURE WORK

Through a great deal of simulation, our algorithm is proved
better than common genetic algorithm and the DCQGA in
most indicators. However, as many other evolutionary al-
gorithms, the principles of setting parameters are not well-
founded. Thus, it also needs empirical fine tuning. In the fu-
ture, we will commit ourselves to giving rigorous mathematics
analysis of our algorithm’s advantages, and give some reliable
principles of setting algorithm’s parameters.

ACKNOWLEDGMENT

This work is partially funded by the NCET from the
Ministry of Education of China.

REFERENCES

[1] Holland, J.: Adaptation in Natural and Artificial Systems. The University
of Michigan Press, Ann Arbor, 1975.

[2] Dsgupta D. Artificial Immune Systems and Their Applications[M]. Berlin
Heidelberg: Springer-Verlag, 1999.

[3] J. Kennedy, R. Eberhart.: Particle Swarm Optimization. Proc. IEEE Conf.
On Neural Network (1995), pp.1942-1948.

[4] Dorigo, M., Maniezzo, V. and Colorni, A. (1996). The Ant System:
Optimization by a Colony of Cooperating Agents. IEEE Trans. Syst. Man
Cybern. B 26, 29-41.

[5] Grover L. K. A fast quantum mechanical algorithm for database
search[C]. Proc. of the 28th annual ACM Symp. on Theory of Computing.
New York, USA: ACM Press, 1996.6:212-219.

[6] Dero J and Siarry P. An ant colony algorithm aimed at dynamic continu-
ous optimization[J].Applied Mathematics and Computation, 2006, 181(1):
457-467.

[7] LI P C and LI S Y. Quantum-inspired evolutionary algorithm for contin-
uous spaces optimization[J]. Chinese Journal of Electronics, 2008, 17(1):
80-84.

209195

